Acta Ophthalmologica Polonica
twitter
en POLSKI
eISSN: 2719-3209
ISSN: 0023-2157
Klinika Oczna / Acta Ophthalmologica Polonica
Current issue Archive Videos Articles in press About the journal Supplements Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2025
vol. 127
 
Share:
Share:
Review article

Why does glaucoma affect eye movements?

Aleksandra Gorczyca
1
,
Przemysław Zabel
2
,
Karolina Suwała
2
,
Martyna Gębska-Tołoczko
2
,
Katarzyna Zabel
2
,
Szymon Tamborski
3
,
Michał Meina
3
,
Maciej Szkulmowski
3
,
Jakub J. Kałużny
2

  1. Doctoral School of Medical and Health Sciences in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
  2. Department of Sense Organ Research, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
  3. Department of Biophotonics and Optical Engineering, Institute of Physics, Nicolaus Copernicus University in Torun, Poland
KLINIKA OCZNA 2025, 127, 2: 53-61
Online publish date: 2025/06/23
Article file
- KO-00483_EN.pdf  [1.72 MB]
Get citation
 
PlumX metrics:
 
1. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020; 12: e11686.
2. Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol 2007; 18: 110-114.
3. Calkins DJ, Horner PJ. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci 2012; 53: 2482-2484.
4. Fletcher WA, Sharpe JA. Saccadic eye movement dysfunction in Alzheimer’s disease. Ann Neurol 1986; 20: 464-471.
5. Kapoula Z, Yang Q, Otero-Millan J, et al. Distinctive features of microsaccades in Alzheimer’s disease and in mild cognitive impairment. Age (Dordr) 2014; 36: 535-543.
6. Gorges M, Pinkhardt E, Kassubek J. Alterations of Eye Movement Control in Neurodegenerative Movement Disorders. J Ophthalmol 2014; 2014: 658243.
7. Camacho PB, Carbonari R, Shen S, et al. Voluntary Saccade Training Protocol in Persons with Parkinson’s Disease and Healthy Adults. Front Aging Neurosci 2019; 11: 77.
8. Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res 1999; 18: 39-57.
9. Weber AJ, Harman CD. Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 2005; 46: 3197-3207.
10. Perry VH, Oehler R, Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 1984; 12: 1101-1123.
11. Dacey DM. Primate retina: cell types, circuits and color opponency [published erratum appears in Prog Retin Eye Res 2000; 19: 646]. Prog Retin Eye Res 1999; 18: 737-763.
12. Crabb DP, Smith ND, Rauscher FG, et al. Exploring eye movements in patients with glaucoma when viewing a driving scene. PLoS One 2010; 5: e9710.
13. Lee SS, Black AA, Wood JM. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability. PLoS One 2017; 12: e0178876.
14. Huang W, Xu Q, Su J, et al. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Rep 2022; 40: 111322.
15. La Morgia C, Di Vito L, Carelli V, et al. Patterns of Retinal Ganglion Cell Damage in Neurodegenerative Disorders: Parvocellular vs Magnocellular Degeneration in Optical Coherence Tomography Studies. Front Neurol 2017; 8: 710.
16. Callaway EM. Structure and function of parallel pathways in the primate early visual system. J Physiol 2005; 566: 13-19.
17. Silveira LC, Saito CA, Lee BB, et al. Morphology and physiology of primate M- and P-cells. Prog Brain Res 2004; 144: 21-46.
18. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107: 453-464.
19. Merigan WH, Maunsell JH. How parallel are the primate visual pathways? Annu Rev Neurosci 1993; 16: 369-402.
20. Prost ME, Wasyluk J. Histopathology of retinal ganglion cell death and diagnosis and monitoring of glaucoma progression. OphthaTherapy 2017; 4: 36-41.
21. Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 1988; 240: 740-749.
22. Yücel YH, Zhang Q, Gupta N, et al. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 2000; 118: 378-384.
23. Scuderi G, Fragiotta S, Scuderi L, et al. Ganglion Cell Complex Analysis in Glaucoma Patients: What Can It Tell Us? Eye Brain 2020; 12: 33-44.
24. Vrabec JP, Levin LA. The neurobiology of cell death in glaucoma. Eye (Lond) 2007; 21: 11-14.
25. Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 1998; 39: 2304-2320.
26. Liu M, Duggan J, Salt TE, Cordeiro MF. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp Eye Res 2011; 92: 244-250.
27. Feng L, Zhao Y, Yoshida M, et al. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013; 54: 1106-1117.
28. Fortune B, Cull GA, Burgoyne CF. Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. Invest Ophthalmol Vis Sci 2008; 49: 4444-4452.
29. Quigley HA, Sanchez RM, Dunkelberger GR, et al. Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci 1987; 28: 913-920.
30. Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmol 1988; 95: 357-363.
31. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991; 32: 484-491.
32. Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1993; 34: 395-400.
33. Chaturvedi N, Hedley-Whyte ET, Dreyer EB. Lateral geniculate nucleus in glaucoma. Am J Ophthalmol 1993; 116: 182-188.
34. Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol 2000; 84: 303-310.
35. Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma 2002; 11: 365-370.
36. Martin L, Wanger P, Vancea L, et al. Concordance of high-pass resolution perimetry and frequency-doubling technology perimetry results in glaucoma: no support for selective ganglion cell damage. J Glaucoma 2003; 12: 40-44.
37. Sun H, Swanson WH, Arvidson B, et al. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vision Res 2008; 48: 2633-2641.
38. Cherecheanu AP, Garhofer G, Schmidl D, et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13: 36-42.
39. Tripathi S, Ariga M, Srinivasan MM. Ocular blood flow in glaucoma. TNOA J Ophthalmic Sci Res 2020; 58: 180185.
40. Zabel K, Zabel P, Kaluzna M. Correlation of retinal sensitivity in microperimetry with vascular density in optical coherence tomography angiography in primary open-angle glaucoma. PLoS One 2020; 15: e0235571.
41. Van Essen DC, Anderson CH, Felleman DJ. Information processing in the primate visual system: an integrated systems perspective. Science 1992; 255: 419-423.
42. Born RT, Bradley DC. Structure and function of visual area MT. Annu Rev Neurosci 2005; 28: 157-189.
43. Annese J, Gazzaniga MS, Toga AW. Localization of the human cortical visual area MT based on computer aided histological analysis. Cereb Cortex 2005; 15: 1044-1053.
44. Pierrot-Deseilligny C, Milea D, Müri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol 2004; 17: 17-25.
45. Lal V, Truong D. Eye movement abnormalities in movement disorders. Clin Park Relat Disord 2019; 1: 54-63.
46. Maunsell JH, Van Essen DC. Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. J Comp Neurol 1987; 266: 535-555.
47. Maunsell JH, Nealey TA, DePriest DD. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 1990; 10: 3323-3334.
48. Shabana N, Cornilleau Pérès V, Carkeet A, et al. Motion perception in glaucoma patients: a review. Surv Ophthalmol 2003; 48: 92-106.
49. Pouget P. The cortex is in overall control of    ‘voluntary’ eye movement. Eye (Lond) 2015; 29: 241-245.
50. Schall JD, Morel A, King DJ, et al. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 1995; 15: 4464-4487.
51. Kanjee R, Yücel YH, Steinbach MJ, et al. Delayed saccadic eyemovements in glaucoma. Eye Brain 2012; 4: 63-68.
52. Najjar RP, Sharma S, Drouet M, et al. Disrupted Eye movements in preperimetric primary open-angle glaucoma. Invest Opthalmol Visual Sci 2017; 58: 2430.
53. Tatham AJ, Murray IC, McTrusty AD, et al. Speed and accuracy of saccades in patients with glaucoma evaluated using an eye tracking perimeter. BMC Ophthalmol 2020; 20: 259.
54. Thepass G, Lemig H, Vermeer K, et al. Slowed saccadic reaction times in seemingly normal parts of glaucomatous visual fields. Front Med 2021; 8: 679297.
55. Mazumdar D, Meethal NSK, George R, et al. Saccadic reaction time in mirror image sectors across horizontal meridian in eye movement perimetry. Sci Rep 2021; 11: 2630.
56. Toepfer A, Kasten E, Guenther T, et al. Perimetry while moving the eyes: implications for the variability of visual field defects.
57. J Neuroophthalmol 2008; 28: 308-319.
58. Kadavath Meethal NS, Mazumdar D, Asokan R, et al. Development of a test grid using Eye Movement Perimetry for screening glaucomatous visual field defects. Graefes Arch Clin Exp Ophthalmol 2018; 256: 371-379.
59. Alexander RG, Macknik SL, Martinez-Conde S. Microsaccade Characteristics in Neurological and Ophthalmic Disease Front Neurol 2018, 9: 144.
60. Krauzlis RJ, Goffart L, Hafed ZM. Neuronal control of fixation and fixational eye movements. Philos Trans R Soc Lond B Biol Sci 2017; 372: 20160205.
61. Anderson TJ, MacAskill MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 2013; 9: 74-85.
62. Mallery RM, Poolman P, Thurtell MJ, et al. Visual Fixation Instability in Multiple Sclerosis Measured Using SLO-OCT. Invest Ophthalmol Vis Sci 2018; 59: 196-201.
63. Montesano G, Crabb DP, Jones PR, et al. Evidence for alterations in fixational eye movements in glaucoma. BMC Ophthalmol 2018; 18: 191.
64. Gil-Casas A, Piñero Llorens DP, Molina-Martin A. Ocular fixation and macular integrity by microperimetry in multiple sclerosis.
65. Graefes Arch Clin Exp Ophthalmol 2021; 259: 157-164.
66. Fujii GY, de Juan E Jr, Sunness J, et al. Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmol 2002; 109: 1737-1744.
67. Morales MU, Saker S, Wilde C, et al. Reference Clinical Database for Fixation Stability Metrics in Normal Subjects Measured with the MAIA Microperimeter. Transl Vis Sci Technol 2016; 5: 6.
68. Crossland MD, Dunbar HM, Rubin GS. Fixation stability measurement using the MP1 microperimeter. Retina 2009; 29: 651-656.
69. Longhin E, Convento E, Pilotto E, et al. Static and dynamic retinal fixation stability in microperimetry. Can J Ophthalmol 2013; 48: 375-380.
70. Shi Y, Liu M, Wang X, et al. Fixation behavior in primary open angle glaucoma at early and moderate stage assessed by the MicroPerimeter MP-1. J Glaucoma 2013; 22: 169-173.
71. Zabel K, Zabel P, Suwala K, et al. Alterations in Fixation Indices in Primary Open-Angle Glaucoma by Microperimetry. J Clin Med 2022; 11: 2368.
72. Asfaw DS, Jones PR, Mönter VM, et al. Does Glaucoma Alter Eye Movements When Viewing Images of Natural Scenes? A Between-Eye Study. Invest Ophthalmol Vis Sci 2018;    8: 3189-3198.
73. Bartuzel MM, Wróbel K, Tamborski S, et al. High-resolution, ultrafast, wide-field retinal eye-tracking for enhanced quantification of fixational and saccadic motion. Biomed Opt Express 2020; 11: 3164-3180.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.