Recommendations of the Polish Society of Ophthalmology regarding perioperative modifications of anticoagulant therapy in ophthalmic surgery

Joanna Przybek-Skrzypecka1,2, Alina Bakunowicz-Lazarczyk3, Dariusz Dobrowolski4,5,6, Iwona Grabska-Liberek7,8, Jakub Kałużyń9,10, Jerzy Mackiewicz11, Marta Misiuk-Hojto12, Ewa Mrukwa-Kominek13, Agnieszka Nowak14,15, Weronika Pociej-Marcjak14,15, Bożena Romanowska-Dixon14,15, Marcin Stopa16,17, Jacek P. Szaflik1,2

1Department of Ophthalmology, Medical University of Warsaw, Poland
2SPKSO Ophthalmic University Hospital, Warsaw, Poland
3Department of Pediatric Ophthalmology with Strabismus Treatment Centre, Medical University of Bialystok, Bialystok, Poland
4Chair and Clinical Department of Ophthalmology, School of Medicine, Dentistry Division in Zabrze, Medical University of Silesia, Poland
5Department of Ophthalmology, District Railway Hospital in Katowice, Poland
6Department of Ophthalmology with Pediatric Unit, St Barbara 5th Regional Hospital in Sosnowiec, Poland
7Ophthalmology Department, Centre of Postgraduate Medical Education, Warsaw, Poland
8Prof. W. Orłowski Independent Public Clinical Hospital, Warsaw, Poland
9Department of Sense Organ Research, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
10Ophthalmology Clinic “Oftalmika”, Poland
11Department of Retina and Vitreous Humour Surgery, Medical University of Lublin, Lublin, Poland
12Department and Clinic of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland
13Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
14Department of Ophthalmology and Ocular Oncology, University Hospital in Krakow, Poland
15Department of Ophthalmology Jagiellonian University Medical College, Krakow, Poland
16Department of Ophthalmology, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
17Heliodor Swiecicki University Hospital, Poznan, Poland

INTRODUCTION

Over the last few years, there has been a notable increase in the proportion of patients on long-term antithrombotic therapy. Roughly 20% of the global population is estimated to take aspirin, while about 4% of the population other antithrombotic agents, including antiplatelet medications (P2Y12 receptor inhibitors: clopidogrel, prasugrel, ticagrelol) and anticoagulants (warfarin, acenocumarol, dabigatran, rivaroxaban, apixaban, edoxaban, betrixaban) [1].

The decision of whether to modify or maintain anticoagulant therapy in patients prior to ophthalmic surgery is based on multiple factors including the type of surgery and anesthesia, risk of thromboembolic events, and type of prevention (primary, secondary). In this paper, we present a consensus statement based on the available published data, including the guidelines of ophthalmology societies worldwide and the po-
sition statement by experts of the Polish Society of Ophthalmology on the perioperative modifications of anticoagulant therapy in ophthalmic surgery.

The average risk of bleeding associated with ophthalmic surgery in the general population is estimated at 0.4%. It comprises the risk of intraarticular, suprachoroidal, and vitreous hemorrhage as well as recurrent anterior chamber hyphema and orbital hematoma. Aspirin, the most popular antiplatelet agent, is a non-steroidal anti-inflammatory drug that inhibits platelet aggregation. It is used both in primary prevention (prophylaxis) and secondary prevention (post episode) of thromboembolic events (including acute coronary syndrome and stroke). A dose of 75-150 mg effectively inhibits platelet aggregation for 7-10 days after commencing therapy. Importantly, dual antiplatelet therapy (DAPT = acetylsalicylic acid + P2Y12 inhibitor) significantly increases the risk of perioperative bleeding compared to aspirin monotherapy (15% vs. 4%) [2].

Anticoagulant and antiplatelet therapies available in Poland (as of December 2022) are listed in Tables I and II below. Patient management depends on the estimated risk of thromboembolic event. The high-risk group includes patients with atrial fibrillation and history of stroke, episode of venous thromboembolism within the last three months, artificial (mechanical) heart valve, cancer, and ejection fraction < 30%.

Recommended modifications to anticoagulant treatment are listed in Table III [2]. Nonetheless, it should be emphasized that any modification of long-term anticoagulant therapy increases the risk of thromboembolic events. Bridging therapy (usually with low-molecular-weight heparin) has also been shown to induce bleeding. The final decision regarding perioperative modification of treatment depends on the judgment of the cardiologist in charge of the patient [3].

The section below addresses in more detail the modifications of anticoagulant and antiplatelet therapies that are indicated in various ophthalmic procedures.

CATARACT

As a standard practice, cataract surgery does not require modifications to long-term anticoagulant therapy. However, it is important to highlight that these recommendations may need to be adjusted depending on the type of anesthesia required for the surgery. It is estimated that approximately 90% of phacoemulsification cataract surgeries are performed under topical anesthesia, which does not require any changes in anticoagulant treatment. Peribulbar or retrobulbar anesthesia increases the risk of postoperative bleeding, particularly in patients treated with P2Y12 inhibitors. Subconjunctival hemorrhage is observed in 4.5% of patients taking clopidogrel and 3.7% taking warfarin vs. 1.7% in patients not taking any anticoagulants after anesthesia other than topical (peribulbar, retrobulbar, subconjunctival, sub-Tenon's).

Most incidents are mild and self-limiting (subconjunctival hemorrhage, pinpoint hemorrhage). In patients on warfarin, the decision to modify anticoagulant therapy should be based on the INR result. However, it needs to be noted that a switch from warfarin is associated with an elevated risk of thromboembolic events, particularly stroke (up to 1/100 patients), and an increased risk of orbital hemorrhage (from 0.2% to 1% for invasive anesthesia) [1].

IRIDOTOMY

Aspirin or clopidogrel should be discontinued two weeks before scheduled iridotomy if anticoagulant therapy is prescribed for primary prevention, or continued if it is used for secondary prevention [1].

CAPSULOTOMY

No modification in anticoagulant therapy is needed [1].

GLAUCOMA SURGERY

There is evidence for a heightened risk of perioperative bleeding in glaucoma surgery in patients on all types of anticoagulation therapy. Intraoperative hemorrhagic complications increase the risk of permanent impairment of visual acuity. Bleeding into the anterior chamber during trabeculectomy may lead to filtering bleb failure and early surgical failure. Some surgeons allow anti-glaucoma surgery to be performed without withdrawing anticoagulant therapy, e.g. with warfarin, in patients with stable therapeutic INR levels or receiving treatment with aspirin for secondary prevention. The consensus of the available literature is that monotherapy with aspirin and P2Y12 receptor inhibitors should be discontinued when used for primary prevention, and continued when prescribed for secondary prevention. P2Y12 receptor inhibitors should be discontinued before glaucoma surgery when they are part of dual therapy (e.g. aspirin + clopidogrel) [4].

Table I. Anticoagulant groups and agents

<table>
<thead>
<tr>
<th>Group</th>
<th>Agents</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K antagonists</td>
<td>Aacenocoumarol</td>
<td>Need to monitor the INR (INR = 2-3 is considered the therapeutic range)</td>
</tr>
<tr>
<td></td>
<td>Warfarin</td>
<td></td>
</tr>
<tr>
<td>Indirect thrombin</td>
<td>Unfractionated heparin</td>
<td></td>
</tr>
<tr>
<td>inhibitors</td>
<td>Low-molecular-weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>heparins</td>
<td></td>
</tr>
<tr>
<td>Direct factor Xa</td>
<td>Rivaroxaban</td>
<td></td>
</tr>
<tr>
<td>inhibitors (oral)</td>
<td>Apixaban</td>
<td></td>
</tr>
<tr>
<td>Direct thrombin</td>
<td>Dabigatran</td>
<td></td>
</tr>
<tr>
<td>inhibitors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II. Antiplatelet agents

<table>
<thead>
<tr>
<th>Antiplatelet agent</th>
<th>Duration of activity</th>
<th>Withdrawal before surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel</td>
<td>3-10 days</td>
<td>5 days</td>
</tr>
<tr>
<td>Prasugrel</td>
<td>5-10 days</td>
<td>7 days</td>
</tr>
<tr>
<td>Ticagrelol</td>
<td>3-4 days</td>
<td>5 days</td>
</tr>
</tbody>
</table>
Recommendations of the Polish Society of Ophthalmology regarding perioperative modifications of anticoagulant therapy in ophthalmic surgery

The decision on bridging therapy rests with the patient’s cardiologist.

RETINAL SURGERY

The literature is inconclusive on the risk of bleeding and the need to modify therapy in vitreoretinal surgery. There is evidence for an increased risk of suprachoroidal hemorrhage after vitrectomy for diabetic retinopathy in patients receiving long-term treatment with aspirin or warfarin (approximately 1%) [5].

We recommend continuing anticoagulant therapy in patients undergoing surgery for epiretinal membrane, macular hole, and retinal detachment without PVR, especially when 25 G or 27 G vitrectomy is performed [6]. In patients requiring endoresections for cancer treatment, vitrectomy due to diabetic retinopathy with massive proliferations, with anticipated extensive retinotomy, and in selected cases of posttraumatic vitrectomy, discontinuation of anticoagulants is advised, with bridging therapy prescribed in selected cases.

EYELID AND ORBITAL SURGERY

In theory, surgical procedures involving structures up to the orbital septum are associated with a low risk of bleeding and do not require any modification of anticoagulant therapy. All procedures that interfere with the continuity of structures located behind the orbital septum, including ptosis surgery, and lower blepharoplasty, carry a high risk of bleeding and permanent damage to vision. Similarly, lacrimal duct surgery, including dacyrocystectomy, is classified as a high-risk procedure in terms of intra- and postoperative bleeding, and requires modification of anticoagulant therapy, as set out in Table III [7, 8].

CORNEAL SURGERY

The need to modify anticoagulant therapy in corneal surgery is determined primarily by the type of anesthesia used in the procedure. Corneal transplantation performed under topical anesthesia requires switching anticoagulant therapy because of the need to perform peribulbar block. Regardless of whether or not anticoagulant therapy is modified, the risk of suprachoroidal and vitreous hemorrhages during penetrating corneal grafting (the so-called “open sky” procedure) is among the highest in ophthalmology (approximately 0.4% and 0.7%, respectively) [9]. Pterygium surgery does not require changes of ongoing anticoagulation therapy.

The final decision is made on a case-by-case basis by the cardiologist and ophthalmologist in charge.

OSTATECZNA DECYZJA JEST PODEJMOWANA INDYWIDUALNE W SPRAWIE KARDIOLOGA I OKULISTA.

STRABISMUS SURGERY

Given the average age at strabismus surgery, which is mainly done in children, there are no recommendations for changing anticoagulant therapy in this surgical indication.

DISCLOSURE

The authors declare no conflict of interest.
References

